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Abstract—Broad-band high-power cascode AlGaN/GaN high  This paper addresses the problems associated with
electron-mobility transistor monolithic-microwave integrated-cir-  proad-band high-power MMIC power amplifiers on both
cuit (MMIC) amplifiers with high gain and power-added efficiency — 1ha gevice technology and circuit design fronts by the use of

(PAE) have been fabricated on high-thermal conductivity SiC | . . oo
substrates. A cascode gain cell exhibiting 5 W of power at 8 GHz high-performance AlGaN/GaN HEMTs in MMIC amplifier

with a small-signal gain of 19 dB was realized. A nonuniform configurations optimized for high power and power-added effi-
distributed amplifier (NDA) based on this process was designed, ciency (PAE). Previous work on GaN-based circuits has shown
fabricated, and tested, yielding a saturated output power of 3-6 W  the viability of these devices for microwave circuit applications
over a dc—8-GHz bandwidth with an associated PAE of 13%—-31%. [3]-[7]. However, to date, no multioctave power-amplifier

A broad-band amplifier MMIC using cascode cells in conjunction . .
with a lossy-match input matching network showed a useful MMIC results u.s!ng AIGaN/GaN HEMTs grown on h'gh
operating range of dc—8 GHz with an output power of 5-7.5 W thermal-conductivity SiC substrates have appeared in the
and a PAE of 20%-33% over this range. The third-order inter- published literature. This paper describes the design and devel-
modulation products of the amplifiers under two-tone excitation opment of the first multioctave broad-band MMICs based on
were studied and third-order-intercept values of 42 and 43 dBm A |caN/GaN HEMTS fabricated on high thermal-conductivity
(computed using two-tone carrier power) for the lossy match and SiC substrates f imole efficient device heat sinki First
NDA amplifiers were obtained. iC substrates for simple efficient device heat sinking. First,
technology used to fabricate the active and passive devices on
SiC substrates is described. Next, the large-signal operation of
the cascode power cell in terms of its dynamic loadline behavior
is compared to the measured deV’ characteristics for the
|. INTRODUCTION device, showing strong correlation of the dc and microwave

OR DECADES, the realization of broad-band high-powecru,rrem' Results for cascode paﬁrs of 0.25—_ and 1-mm periph—
monolithic-microwave integrated-circuit (MMIC) power€M€S show excellent power scaling properties, as both devices
ygalized output power densities a6 W/mm (>36% PAE) at

amplifiers has posed a significant challenge to microwa Ly ) L
design and systems engineers due to the electrical {Hz at a drain bias of 30 V. The design and characteristics

thermal limitations of GaAs transistor technology. In recerf ca@scode broad-band power MMICs using both nonuniform

years, AlGaN/GaN high electron-mobility transistor (HEMT{liStributed amplifier (NDA) and lossy-match designs are then

technology has established itself as a strong contender #yen- In each case, a dc-8-GHz 3-dB bandwidth was achieved
such applications because of its large electron veIothh output powers of 3—-6 and 5-7.5 W and associated PAEs of

(>1 x 107 cm/s), bandgap (3.4 eV), breakdown voltagé3%_31% and 20%-33%, respectively. Evaluation of the am-
(>50 V for fr = '50 GHz), and sheet ’carrier concentratiorflifiers under two-tone excitation yielded third-order intercept

(ns > 1 x 10'3 cm~2). Due to the superior electronic prop-POINt (IP3) values of 43 and 42 dBm.
erties of the material and the possibility to grow the material
on high thermal conductivity (3.5 W/cmK) SiC substrates,
power densities as high as 10.7 W/mm at 10 GHz [1] and
6.5 W/mm at 20 GHz [2] have been achieved. Multioctave high-power amplifiers demand microwave de-
vices with high power density. Consider a uniform distributed
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Fig. 1. Cross-sectional diagram showing the MMIC process for AIGaN/GaN
HEMTSs on SiC substrates.

where Vi, IS the knee voltage of the transistds,, is its
drain—source breakdown voltage, a#d is the load presented (b)

to its drain terminal. Clearly, for a fixed gate-line impedanc - . . _

Za, the watts per picofarad rati, /Cs dictates the PBW ﬁ'ii 1ﬁ?ﬂﬁé’}fniCZﬁS{?-ﬂ'ci‘”Séb)fEZ’L'mqgifff Ci‘sﬁiieﬁeg_?‘}?n:,

of the amplifier. For a given transistor technolog$,/Cgs  Die size 0.7x 0.6 mnt.

is a fixed quantity since according to (2§, depends on

Vi, which, along with Cqg, increases with gate length.storage in surface states in the high field surface region of our
AlGaN/GaN HEMTs combine a frequency response similar ttndoped HEMT devices. Following the passivation step, holes
GaAs-based devices with significantly higher current densitiese etched in the &N, using reactive ion etching to allow for
and breakdown voltages. This enhancement in performammmmntact to the first-level interconnect metal. Air bridges are
over GaAs on a watt-per-picofarad basis raises the output polegn plated to a thickness of 2.6n using a two-level optical
obtainable from a wide-band amplifier. The following pararesist and electroplating scheme.

graphs describe the process and characteristics of AlIGaN/GaNDevices with gate peripheries of 1ptn fabricated using this
HEMTs and then discuss the large-signal scaling propertisme process were recently measured at 10 GHz and yielded
and dynamic loadline behavior of AlIGaN/GaN HEMTSs in gower densities of 10.7 W/mm when tuned for maximum power

cascode configuration. [1]. In this study, lower drain biases and, subsequently, lower
power densities are used to ensure reliability of the devices and
A. MMIC Process circuits over many power sweeps.

A simple seven-mask-level MMIC process, depicted in Since this process has no backside via-hole process devel-
Fig. 1, is used to fabricate the devices and circuits of th@ped, coplanar waveguide (CPW) technology is used for the
study. The wafers used to fabricate the MMICs are grown Igyeation of the transmission lines used in the MMICs. Using the
organo—metallic vapor phase expitaxy and consist of a 50-r@te¢ctroplated Au deposited on top of the first level of evaporated
AlGaN nucleation layer followed by a 1-1,5m GaN buffer Au to achieve a total thickness of 28n, transmission lines
and Al 3Gay 7N barrier layers grown on 4-H SiC substratesvith nominal impedances of 30, 50, 60, and8@nd losses of
Alignment marks are formed with a Pt layer for both e-bearh-1.5 dB/mm are realized.
and optical alignments. Next, mesas for active transistors as ) ] )
well as resistors are etched to a depth of 220 nm usingBa Pynamic Loadline and Power Scaling of
Cl,-based electron—cyclotron resonance (ECR) etching tobf@scode-Connected Gallium—Nitride HEMTs
Ohmic contact to the two-dimensional electron gas is accom-The circuits presented here use the cascode configuration
plished by the use of a Ti (20 nm)/Al (120 nm)/Ti (45 nm)/Aushown in Fig. 2 due to the high gain associated with its low
(55 nm) ohmic contact metal stack that is patterned using seedback capacitance and output conductance. In its early
e-beam liftoff process and then annealed in an 800N, stages, AlGaN/GaN HEMT transistor technology suffered from
ambient for 30 s. Mushroom gates employing an Ni Schottlgtectron trapping effects that decreased the current carrying
barrier are formed using direct e-beam writing in conjunctiocapability of the devices in the high-field gate—drain region.
with a tri-level resist scheme. All devices have a gate length dhis effect caused the microwave channel current and, hence,
0.30um. The first level interconnect metal is patterned usingutput power to be lower than that predicted byldé curves
optical lithography and the liftoff technique. A 200-nmsHi;  [8]. Fig. 3 compares the measured 8-GHz dynamic loadline
passivation/dielectric layer is applied after the interconnebehavior of a cascode-connected <3250 ;:m? device to
metal to passivate the high-field regions of the devices, #s measured dé—V characteristics. As seen from the figure,
well as to form a dielectric for metal-insulator-metal (MIM}rapping effects are minimal, as good correlation between the
capacitors. Past studies [8] indicate that this passivation layler /-V curves and the realized microwave current swing of
plays a role in helping to suppress long-time constant charjeA/mm is evident. The dynamic loadline measurement was
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Drain Voltage (Volts) DAs offer broad-band operation by incorporating gain ele-

ments in synthetic lumped-element approximate transmission

Fig. 3. 8-GHz dynamic loadline and d&-V curves V1 wop = +1V, lines, realized by the transistor capacitances and intervening
Var,sp = —1 V) for cascode cell withv, = W2 = 250 um and jnductances [10]. This topology allows the addition of transcon-
Lo1.ge =03 um. Bias¥p =25V, Vor = =3V, Vaz = 45 V. ductancey,,, without adding device capacitance, thus resulting
in excellent gain-bandwidth product. However, conventional

20 | ‘ ‘ ‘ €0 DAs do not have good PAE because: 1) power is consumed
8 GHz v =30y > /mm—— by t_he synthetic drain-line _termination dummy Ic_)ad_; 2) the

. 35] ©D P 150 devices are loaded nonuniformly along the drain line; and
g ou 3) frequency-dependent attenuation along the gate line results
g 0y 140 in nonuniform drive of the active devices.
i 55t 20 2 Quantitatively, the ratio of the power dissipated in the
é g drain-line dummy load of Fig. 5Py, to the power dissipated
=, 200 120 in the output load”;, varies as the ratio of frequency to cutoff
a" | Gain frequencyf/f. and number of transisto&. At frequencies

157 110 well below the amplifier cutoff frequency., this ratio, i.e.,

o " Tongies: W25 mm Pp /Py, is given as

0 5 10 15 20 25

Pavail(dBm) PD _ Sln2(2fN/fC) (3)
Py, N2sin?(2f/f.)
Fig. 4. Comparison of saturated output power, gain, and PAE as a function of
input drive power for cascode cells witli, = W> = 1 mm (Fig. 2)and¥s = \yhere
Wy = 0.25 mm (Lgy = Lge = 0.3 pgm) under conditions of', = 30V,
Va1 = =3V, Ve = 45V, and a frequency of 8 GHz. 1
fc = (4)

m/LaCas

performed using a 4-26.5-GHz Maury load—pull system with _ _
HP 708208A microwave transition analyzers (MTAs) used in Here,Lc_; refers to the inductance of the gate-line Iadd.er net-
place of power meters [9]. The voltage swing and maximumc_’rk sections anqﬁgs refers. to the gate—source capacitance.
channel current, as evidenced by the dynamic loadline, enadle$ cl_ear from this expression that near ‘_jc’ the_ power dissi-
a power density of 45 W/mm to be obtained under bi&ated inthe dumm_y load is equal to that delivered in the external
conditions of¥, = 25V, Vey = —3 V. and Vs = 45 V. Io_ad. At frequeques abovg.7 /2N, PP/PL < —13 dB_. At

Fig. 2(b) shows one of the two types of cascode cells usg@her fre_quenues, however, qonoptlmum and nonuniform de-
in the amplifier circuits of this paper. It contains 1 mm of totaY!C€ l0ading degrades the realized output power and PAE [11].
gate periphery for both the common source (CS) and commbiaddition, freguency—dependent attenqatlon along the gate line
gate (CG) devices. This device uses aj@bsection of a high- CaUSes no_nunlfor_m d_rlve of each tran5|stor_[12]. The resu_lt of
impedance transmission line to separate the CS and CG H‘lg_nonumform drlv_e_ls premature_compr_essmn_of the transistor
vices. This separation allows the devices to have some degre&!8Fest to the amplifier input and insufficient drive of the tran-
thermal isolation from one another, thus increasing the ability S51OrS closest to the gate-line termination resistor.
the device to dissipate heat. Additionally, the series inductance ,
provided by the high-impedance transmission line gives gdih D€sIgn
peaking. Fig. 4 demonstrates the excellent power scaling propThree cascode-connected AlIGaN/GaN HEMT cells, having
erties of this cascode pair due, in part, to the high thermal cah3-:m (each) gate lengths and 1-mm (each) gate peripheries,
ductivity SiC substrate. The figure compares the output poweere employed to design and fabricate broad-band high-power
density, gain, and PAE of @; = W, = 0.250-mm device with  MMIC NDAs. These cascode devices, optimized for a very
that of aW; = W, = 1-mm device. In each case, a power dencompact layout, consist of adjacent CS and CG device gate
sity of 5 W/mm and a PAE of 36% was met or exceeded atfiagers placed :m apart with a 4um strip of ohmic contact
bias point ofp, =30V, Vg = -3V, andVge = +5 V. metal between them, as described in [4]. Eight 12%long
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1-mm cascode cell photograph. Die size: 25..4 mn¥. All gate CPW line

impedances are 80, and the drain-line impedances, from the left- toright-hangig 7 Measured scattering parameters of an NDA of Fig. 6 under conditions

side, are 60, 50, and 30. of Vp = 15V, Vay = —4 V, Vas = +5 V.

CS/CG finger pairs are placed in parallel to form an overall 40 :

device with 1 mm of total gate periphery for both the CS and 25§r E |
CG devices. A Curtice cubic nonlinear device model for the : . N
cascode cell used in the amplifier design was based on mea- 300 . 1

surements of single-gate 0:3 250 xm? periphery transistors
[9].

Using the nonlinear transistor model, a uniform DA having
a drain-line dummy load was designed initially to ensure the
bandwidth (dc—-8 GHz). The drain-line dummy load was then
removed, and the gate- and drain-line sections were carefully
optimized for optimum power and efficiency using the genetic

25

201

s—=a  Qutput Power T ey
SHe--#  Gain o

algorithm (GA) method [13]. The schematic of the amplifier de- |© - PAE P . .

Pout, (dBm), GT (dB), PAE (%)

signed is shown in Fig. 6(a). The NDA inductances are realized ) 2 s 6 7 g 9

using air-bridged CPW lines, as described in Section II-A, with Frequency (GHz)
the lengths indicated in Fig. 6(a). The circuit parameters, i.e., the @)

gate and drain inductive line lengths, resulted from the iterative
optimization. The optimization goals were specified so that the
three-stage NDA has a flat gain and high efficiency throughout
the band (dc—8 GHz). The photograph of the fabricated circuit
is shown in Fig. 6(b). Note the absence of the drain-line dummy
load and the varying CPW drain-line lengths between each of
the three gain stages, indicative of the nonuniform inductance
values. Also note that the lines nearer the output are of lower
characteristic impedance and, hence, are wider and more able
to supply higher dc current in class-A bias, to mitigate electro-
migration problems [14]. The corresponding center conductor
widths of the CPW drain lines are 27, 40, and 6@, with
ground-to-ground spacing of §am.
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B. Experimental Results )

The measured small-signgfiz, | for th_e fabricated NDA N Fig. 8. Measured large signal results for the cascode-connected HEMT NDA
a 25€) system showed a 3-dB bandwidth of dc—8 GHz witlith 252 source and load impedances. (a) Power spectrum measured at small

>13-dB small-signal gain, as seen in Fig. 7. On-wafer largeignal ¢ = 10 dBm), Prap (P = 25 dBm), Pooy (P = 28 dBm).

signal measurements yielded a continuous wave (CW) powf@Power sweep at5 GHz.

of 3-6 W over 3-8 GHz and a maximum PAE of 31% with

6 W of associated output power at 3 GHz. These measureméi@se measurements, the source and load impedance were set to
results, shown in Fig. 8(a), were takenfa} values of 10, 25, 25 at each frequency using electromechanical tuners. The bias
and 28 dBm, which correspond to linear g&lnig andFs,;. For conditions for these measurements wete = 25 V, Vg1 =
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Fig. 9. (&) Circuit diagram and (b) chip photograph of the lossy-match
broad-band amplifier and detail of 1-mm inductively peaked cascode cell
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Fig. 10. Measured scattering parameters of cascode power amplifier of Fig. 9
under conditions o¥p = 15V, Vg = —4 V,andVgs = +5 V.

: 40
have impedanc&, = 80 (2.

35,

-3V, and V2 5 V (class-A operation). As shown in this

figure, P,,; exceeds’; g by only 1.5 dB over the entire band

of operation. With the same bias condition, the power sweep

Fig. 8(b) was measured at 5 GHz where a saturated output pov
of 5 W at 25% PAE was achieved.
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IV. Lossy-MATcH CASCODE POWER AMPLIFIER
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The broad-band lossy match amplifier of Fig. 9 completel ~.
eliminates the traveling-wave structure for the addition of drai
currents, but retains the constérfilter sections on the input to

5.

:

o—=a  Qutput Power
Gain

Ehm o G

¢--¢ PAE

achieve flat gain. In this way, the devices can be driven to pei
efficiency and their output power match is easily controllec
Also, unlike the NDA, this technique avoids the need to simul-
taneously optimize both the gain flatness and device loading.

A. Design

Two 1-mm cascode cells of Fig. 2 whose large-signal opera-
tion was described in Section II-B were used to realize lossy
match wide-band amplifier. A wide-band amplifier was cre-
ated by absorbing the capacitance on the input of the cascode
into artificial transmission-line sections terminated by a resistor
of value R.., according to the design technique depicted in
Fig. 9(a). This broad-band design technique reduces the circuit’s
transducer gain at low frequencies to a value given by

2
Gr = < grn,tot)

whereg,, . refers to the combined transconductances of tf. 11.
cascode devices and, refers to the impedance of the inpu

, (dBm), Gain (dB), PAE (%)

P
out
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—_— 5
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30

Measured large-signal results for the lossy match amplifier with

52 source and load impedances. (a) Power spectrum measured at small
ignal P., = 14 dBm), Piag (Pin = 24 dBm), P.at (Pin = 28 dBm).

source (25Q2). The cutoff frequency is approximated by (4)b) Power sweep at 6 GHz.
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Fig. 12. Block diagram of two-tone power measurement system used to evaluate intermodulation products for the MMICs at 6 GHz.

: Al 50 r " v
whe_reLG andCqg are d_e_flned by the c_ascode d(_awce sinput qa- Oupu Power | 1P3 = 43 dBm —_
pacitance and the additional constraint on the inductance given | [~—= IMD3

by
_ | Lc
Zy = Cos’ (6)

The output matching sections of the amplifier arsections,
consisting of the shunt output capacitance of the cascode device
in series with the series inductance and shunt capacitance pro-
vided by a 65 - to 3012 step in the transmission-line impedance.
As with the NDA amplifier discussed above, a nonlinear Curtice
cubic device model based on parameter extraction of the0.3
250 xm? device was used for the circuit design and optimiza-
tion. Using the device model and these design guidelines, ffi¢ 13. Saturation characteristics of the NQA of Fig. 6’ under two-tone
amplifier was designed and fabricated. Fig. 9(b) shows a phoféi'ta:t'oigf{/: 6 GHz, f: = 6.01 GHz). Bias1p = 25V, Ve = =3 V.
graph of the finished amplifier. ’ '

Output Power (dBm)
8

£1=6.00 GHz
£,=6.01 GHz

10 5 20 25 30
Input Power (dBm)

B. Experimental Results cascode devices. The bias point of the amplifier for all of these

. o i data wasdp =25V, Vg1 = -3V, andVG2 =5V.
Measured scattering parameters for the amplifier in Fig. 10

show the flat gain achieved by the design that provides a 3-dB V| D o
bandwidth of 8 GHz. While this amplifier maintains less ripple - INTERMODULATION-DISTORTION LHARACTERISTICS

in the forward gain than the NDA of Section IlI$1,] is 3 dB Using the measurement system of Fig. 12, 6-GHz two-tone
higher than that of the NDA. As seen in Fig. 11(a), on-wafeneasurements were performed to characterize the intermodula-
power measurements using a load—pull system, with the inpiain products of the amplifiers discussed in Sections Il and IV.
and output impedances to the circuit set tof2%and constant Fig. 13 shows the intermodulation characteristics for the NDA
input powers of 14 dBm (small signal), 24 dBi(us), and of Fig. 6, while Fig. 14 shows the intermodulation characteris-
29 dBm (P.4:), resulted in a saturated output power of 5—-7.5 Wics for the lossy match amplifier of Fig. 9. The IP3 is deter-
over a 3-8-GHz frequency range. The achieved PAEs argned by extrapolating the portion of the saturation character-
20%-33% over this range. Fig. 11(b) shows the saturatigstics in which the amplifier nonlinearity does not impact the
characteristics of the power amplifier measured at 6 GHamplifier gain significantly. For the NDA of Fig. 6, an IP3 of
where a small-signal gain of 15 dB, an output power of 6.3 W3 dBm was obtained at a bias poinigf = 25V, Vg1 = -3V,

and a PAE of 30% were obtained. From both of these figuremd Vg = +5 V. At the same bias point and frequency, the
it can be seen thalb,,; and P, 4p vary by only 1 dB and the lossy match amplifier of Fig. 9 achieved a IP3 of 42 dBm. These
PAE improves only marginally beyon#; 5. This behavior IP3 results, along with single-tone large-signal results, are sum-
is indicative of reasonably good linearity properties of thmarized in Table I.



2492 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 12, DECEMBER 2001

TABLE |
COMPARISON OFLARGE-SIGNAL CHARACTERISTICS FORNDA AND LOSSYMATCH AMPLIFIER
Design | Die Area BW P Puag  Pwr. Dens. PAE TP3 (2-tn.)  Piag2—tone
(mm?) (W-GHz) (dBm) (dBm) (W/mm) (%) (dBm) (dBm)
LMCC 5.1 DC-8 380 370 3.2 30 42 34.2
NDA 3.5 DC-8 371 35.7 1.7 23 43 32.3
30 1P3 - 42 dBmm DA (Zin = Zow = 50 Q) [16]. It should be emphasized that
v S ~ the measured CW power results presented in this paper were
=0 achieved on-wafer and that with improved heat sinking or
5 pulsed RF measurements, higher power levels may be possible.
%30‘ The measured IP3s for the amplifiers were respectable for
% a technology in its early stages. It is noteworthy that during
20 repeated power sweeps, no significant degradation in the gain
2 and PAE of the MMICs was observed. In any case, the results of
&' this paper demonstrate the desirability of AlIGaN/GaN HEMT
£1=6.00 GHz MMIC technology for wide-band power amplification.
of £,=6.01 GHz

20
Input Power (dBm)

15 25 30
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ditions is approximately 2 dB lower than tlig 45 levels under
single-tone excitation shown in Figs. 8 and 14. Therefore, the
value of IP3 taken on the basis of comparing third-order inter-
modulation (IM3) with the single-tone output power is approx- |3
imately 2 dB higher than that obtained by comparison with the
two-tone output power shown in these figures.

[2]

A
VI. DIScUssION ANDCONCLUSION .
An AlGaN/GaN MMIC technology and realization of
multioctave power amplifiers have been presented. The
large-signal performance of cascode power cells shows th%]
excellent electrical and thermal properties of the devices,
resulting in high output power and excellent power scaling
properties. State-of-the-art multioctave power performance;
was obtained using the cascode configuration in both NDA
and lossy match broad-band power-amplifier designs. It is
seen that, while the NDA provided better input and output 8]
matches, higher power and efficiency for a smaller total gate
periphery (2 mm compared to 3 mm) could be obtained from
the lossy match amplifier. To the authors’ knowledge, the g,
power levels achieved with these amplifiers are among the
highest ever reported for multioctave MMICs. In comparison,

(5]

a 2-W (pulsed) output power has been reported for a 2—8—GHﬁO]

GaAs cascode heterojunction bipolar transistor (HBT) MMIC
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